SHIP DATA PROCESSING
& PERFORMANCE MONITORING

Il
® — Centre for
S | Research-based

Innovation

The Research Council of Norway
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e Data Processing:
e The Framework!

e Quasi-Steady-State Filter

e Ship Performance Monitoring:

e Data-driven

e Physics-based

* Fouling Growth Model

* Fouling Growth Factor

* Generalized Admiralty Coefficient
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PART 1: DATA PROCESSING
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Ensure Uniform

Data Processing Framework s

Divide into Trips

!

Interpolate Hindcast Yes
(Using GPS Data) )

|

Derive New Features

. . . . '
Presented solutions to problems associated with in- —

service data, AlS data as well as noon reports *

e Developed a framework to process the operational  Weather Hindcast [
data for ships

Interpolation

Error?

Data Processing

Errors Detected?

e Code for weather data interpolation (wind, waves, &
current) is available in IMT@Github!

Fix Draft & Trim

Currently working on preparing AIS data + noon 1
. ticulars Calculate Hydrostatics
reports for ship performance monitoring | stip Pt [+

(Displacement, WSA, etc.)
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Quasi-Steady-State Filter

L] Raw Data
+ Tested Samples
L. . O Failed Samples {1st stage)
e Originally developed by Dalheim & s [)._reiled samples (final)
Steen (2020) : P
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* Improvements to be published
Using OSL regression:
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* Fixed time-length sliding window instead of _
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PART 2: PERFORMANCE MONITORING
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PLSR 1 ]

Data-driven Models iy

Source: https://learnche.org/pid/latent-
variable-modelling/projection-to-latent-
structures/how-the-pls-model-is-calculated

TRaYa
Source: https://www.pngegg.com/en/png-nuvrh

e Presented machine-learning (ML) models for ship Propeller | [ Hull & prop,

cleaning
performance monitoring o] A =" - |-
6600 _,’" - *  Shaft power [kW] -

e Linear models like PCR and PLSR were proven to be

: M . . 16000 4 zc.:.{:: ?Iﬂrbe:catinns '
effective using non-linear transformations i o
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e Used ML to predict the trend in ship’s calm-water o] - Mo e B 155
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4 Removing the effects of )

PhVSlCS-baSEd MOdEI Processed ? % 2 ‘. 5 Calculate

Data »

AC,
\Calm-water Wind Waves Y,
e Calculated fouling friction coefficient as:
AC Rr — (Reaim + Rwinag + Rwave) Fouling Friction Coefficient (AC;)
F OS,OSVZ ——-legl-B;=1.85e-10 —--Lleg4-fB; =2.78e-10 —--Leg7-f;=-1.94e-11
~~-leg2-B,=8.49e-12 ---Lleg5-B; =1.9le-11 ==-Legall - f; =-9.38e-13
e Estimated calm-water resistance from Jog 71093 Ai=5094e11 ~—-leg6-fi=6.02e12
empirical methods like Hollenbach, 41 |
Guldhammer & Harvald .. i
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Fouling Growth Factor (FGF)

Propeller Time Accumulation

Hull Time Accumulation

e Fouling growth is simply assumed proportional
to ship’s cumulative static time and its growth
rate (Malone & Little, 1980) :

FGF - Z tstatic, i FGRL

= Static Time
*  Dynamic Time

e Fouling Growth Rate (FGR) can be modeled as

a function of biological factors like
temperature, salinity, etc.

e A proper FGR is work in progress!
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Generalized Admiralty Coefficient

_ _ Generalized Admiralty Coefficient (C)
e Ship’s hydrodynamic performance
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e Can be used for the life-time of a ship o]
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