



S C II Centre for Research-based Innovation



SHIP DATA PROCESSING & PERFORMANCE MONITORING Prateek Gupta, NTNU June 20, 2023 – Trondheim

The Research Council of Norway

### Outline

- Data Processing:
  - The Framework!
  - Quasi-Steady-State Filter
- Ship Performance Monitoring:
  - Data-driven
  - Physics-based
- Fouling Growth Model
  - Fouling Growth Factor
  - Generalized Admiralty Coefficient







# PART 1: DATA PROCESSING





### Data Processing Framework

- Developed a framework to process the operational data for ships
- Presented solutions to problems associated with inservice data, AIS data as well as noon reports
- Code for weather data interpolation (wind, waves, & current) is available in <u>IMT@Github</u>!
- Currently working on preparing <u>AIS data + noon</u> <u>reports</u> for ship performance monitoring\_\_\_\_\_

Streamlined Semi-automatic Data Processing Framework for Ship Performance Analysis

Prateek Gupta<sup>a,\*</sup>, Young-Rong Kim<sup>a</sup>, Sverre Steen<sup>a</sup>, Adil Rasheed<sup>b</sup>

<sup>a</sup>Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Norway <sup>b</sup>Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU), Norway



### Quasi-Steady-State Filter

- Originally developed by *Dalheim* & *Steen (2020)*
- Improvements to be published soon:
  - Correction to t-value equation

$$t_1 = \frac{\hat{b}_1}{1 + \hat{\sigma}_{b_1}}$$

- Fixed time-length sliding window instead of fixed number of samples
- Code available in <u>IMT@Github</u>!





Dalheim, Ø. Ø., & Steen, S. (2020), A computationally efficient method for identification of steady state in time series data from ship monitoring, Journal of Ocean Engineering and Science, 5(4), 333-345

The Research Council of Norway







#### **Data-driven Models**



**Source:** https://learnche.org/pid/latentvariable-modelling/projection-to-latentstructures/how-the-pls-model-is-calculated



Source: https://www.pngegg.com/en/png-nuvrh



• Presented machine-learning (ML) models for ship performance monitoring

• Linear models like PCR and PLSR were proven to be effective using non-linear transformations

Prateek Gupta<sup>a,\*</sup>, Adil Rasheed<sup>b</sup>, Sverre Steen<sup>a</sup>

 Used ML to predict the trend in ship's calm-water power demand or speed-loss and the evolution of calmwater speed-power curve

<sup>a</sup> Norwegian University of Science and Technology (NTNU), Department of Marine Technology, Trondheim, 7052, Sør-trondelag, Norway

<sup>b</sup> Norwegian University of Science and Technology (NTNU), Department of Engineering Cybernetics, Trondheim, 7034, Sør-trondelag, Norway







n-to-latentel-is-calculated **Source:** https://ww

### **Physics-based Model**

Processed Data

• Calculated fouling friction coefficient as:

 $\Delta C_F = \frac{R_T - (R_{Calm} + R_{wind} + R_{wave})}{0.5\rho SV^2}$ 

- Estimated calm-water resistance from empirical methods like Hollenbach, Guldhammer & Harvald
- Physics-based corrections for wind and wave loads on the measured shaft power
  - Wind correction: Fujiwara's method
  - Wave correction: DTU's & SNNM method



#### Fouling Friction Coefficient ( $\Delta C_F$ )











# Fouling Growth Factor (FGF)

Fouling growth is simply assumed proportional to ship's cumulative static time and its growth rate (*Malone & Little, 1980*):

$$FGF = \sum_{i} t_{static, i}. FGR_i$$

- Fouling Growth Rate (FGR) can be modeled as a function of biological factors like temperature, salinity, etc.
- A proper FGR is work in progress!







Malone, J. A., & Little, D. E. (1980), Effects of hull foulants and cleaning/coating practices on ship performance and economics (No. 2)

# **Generalized Admiralty Coefficient**

- Ship's hydrodynamic performance indicator
- Used to approximate FGR for data-driven models
- Advantages:
  - Intuitive & easy to remember
  - Can be used for the life-time of a ship
  - Plug & play!!
- Disadvantages:
  - Log-linear



#### Generalized Admiralty Coefficient (C)



